LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals a Cross-Protection Mechanism for Monascus To Tolerate High-Concentration Ammonium Chloride.

Photo from wikipedia

To achieve the accumulation of targeted secondary metabolites, microorganisms must adopt various protection mechanisms to avoid or reduce damage to cells caused by abiotic stresses, which formed from the changes… Click to show full abstract

To achieve the accumulation of targeted secondary metabolites, microorganisms must adopt various protection mechanisms to avoid or reduce damage to cells caused by abiotic stresses, which formed from the changes of physical and chemical culture conditions. The protection mechanism of Monascus sp. to tolerate high-concentration ammonium chloride was analyzed by sequential window acquisition of all theoretical mass spectra-mass spectrometry proteomics in this work, and the results indicated that abiotic stresses caused by high-concentration ammonium chloride inhibited the synthesis of chitin and glycoprotein, leading to a decrease in cell wall integrity and, thus, affecting cell growth. At the same time, it also inhibited the complex enzyme III and IV activities of the mitochondrial cytochrome respiratory chain, leading to an increase in reactive oxygen species (ROS) levels. With the aim to respond to abiotic stresses, the cross-protection mechanism was implemented in Monascus, including self-protection of the Monascus cell by promoting synthesis of trehalose, a molecular chaperone that facilitates protein folding (such as heat-shock protein) and autophagy-related proteins, through not the enzyme protection system (superoxide dismutase, peroxidase, catalase, NADPH oxidase, and alternative oxidase) but the glutathione/glutaredoxin system, to maintain the intracellular redox state and then eliminate or reduce ROS damage to the cell. At the same time, an alternative respiratory pathway related to NADH dehydrogenase was activated to balance the material and energy metabolism.

Keywords: protection; high concentration; protection mechanism; mass; concentration ammonium; monascus

Journal Title: Journal of agricultural and food chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.