In this study, we investigated an efficient enzymatic strategy for producing potentially valuable phloretin metabolites from phlorizin, a glucoside of phloretin that is rich in apple pomace. Almond β-glucosidase efficiently… Click to show full abstract
In this study, we investigated an efficient enzymatic strategy for producing potentially valuable phloretin metabolites from phlorizin, a glucoside of phloretin that is rich in apple pomace. Almond β-glucosidase efficiently removed phlorizin's glucose moiety to produce phloretin. CYP102A1 engineered by site-directed mutagenesis, domain swapping, and random mutagenesis catalysed the highly regioselective C-hydroxylation of phloretin into 3-OH phloretin with high conversion yields. Under the optimal hydroxylation conditions of 15 g cells L-1 and a 20 mM substrate for whole-cell biocatalysis, phloretin was regioselectively hydroxylated into 3.1 mM 3-OH phloretin each hour. Furthermore, differentiating 3T3-L1 preadipocytes into adipocytes and lipid accumulation was dramatically inhibited by 3-OH phloretin but promoted by phloretin. Consistent with these inhibitory effects, the expression of adipogenic regulator genes was downregulated by 3-OH phloretin. We propose a platform for the sustainable production and value creation of phloretin metabolites from apple pomace capable of inhibiting adipogenesis.
               
Click one of the above tabs to view related content.