Root parasitic weeds such as Striga spp. have caused significant losses in agriculture production worldwide. The seed germination of the weeds depends on strigolactones (SLs) that target a series of… Click to show full abstract
Root parasitic weeds such as Striga spp. have caused significant losses in agriculture production worldwide. The seed germination of the weeds depends on strigolactones (SLs) that target a series of HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE2 in Striga hermonthica (ShHTL) proteins. In the present study, 60 ShHTL7 mutants were constructed, and the equilibrium dissociation constants for GR24 (a synthetic SL analogue, commonly used as a standard in SL germination studies) against these mutants were measured by surface plasmon resonance. Based on these data, the SL binding pocket residues were distinguished. Of them, some specific residues for ShHTL7 were found, such as T142, T190, and M219. A model showing quite well internal and external predictive abilities was established by the mutation-dependent biomacromolecular quantitative structure-activity relationship method. It provided an expanded understanding for GR24 binding to a series of ShHTL receptors and should help design broad-spectrum agrochemicals with cross interactions with several members of SL receptors.
               
Click one of the above tabs to view related content.