αS1-Casein (encoded by the CSN1S1 gene) is associated with higher rates of allergy than other milk protein components for humans. microRNAs (miRNAs) as small noncoding RNA molecules regulate gene expression… Click to show full abstract
αS1-Casein (encoded by the CSN1S1 gene) is associated with higher rates of allergy than other milk protein components for humans. microRNAs (miRNAs) as small noncoding RNA molecules regulate gene expression and influence diverse biological processes. However, little is known about the regulation of milk protein synthesis by miRNAs in ruminants. In this study, we aim to investigate the regulatory roles of miR-204 family members (miR-204-5p and miR-211) on αS1-casein in goat mammary epithelial cells (GMEC). Here, we observed that the CSN1S1 mRNA level is upregulated, while miR-204-5p and miR-211 (miR-204-5p/-211) abundance is downregulated during peak lactation compared with middle lactation of dairy goats. We found that miR-204-5p/-211 synergistically inhibit αS1-casein expression via directly binding to the 3'-untranslated region (3'UTR) of CSN1S1 in GMEC. miR-204-5p/-211 increase β-casein mRNA (CSN2) and protein abundance, as well as the signal transducer and activator of transcription 5a (STAT5a) activity. Further, miR-204-5p/-211 enhance β-casein expression via the CSN1S1-STAT5a signaling axis and promote β-casein transcription by activating the STAT5 response element located in the CSN2 promoter. In conclusion, miR-204-5p/-211 regulate αS1-casein and β-casein synthesis via targeting CSN1S1 in GMEC, which provide the strategy for manipulating miR-204 family members to reduce milk allergy potential and improve ruminant milk quality for human consumption.
               
Click one of the above tabs to view related content.