LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Andrographolide Reduces Lipid Droplet Accumulation in Adipocytes Derived from Human Bone Marrow Mesenchymal Stem Cells by Suppressing Regulators of Adipogenesis.

Photo from wikipedia

Obesity has become a major public health concern; so, a strategy to prevent or reduce obesity is a priority. The inhibition of lipid droplet accumulation and adipogenesis process provides a… Click to show full abstract

Obesity has become a major public health concern; so, a strategy to prevent or reduce obesity is a priority. The inhibition of lipid droplet accumulation and adipogenesis process provides a target for the treatment of obesity. Herein, the effect of andrographolide (AP) on lipid accumulation in adipocytes derived from human bone marrow mesenchymal stem cells (hBM-MSCs) was examined. AP at concentrations of 1, 2.5, 5, and 10 μM reduced lipid droplet accumulation in the adipocytes by suppressing the adipogenic differentiation of hBM-MSCs. Concurrently, the expressions of adipogenic marker genes and the level of adipokines secreted by adipocytes were suppressed. Gene screening analysis showed a negative regulation of genes involved in the adipogenesis process. In conclusion, we demonstrated for the first time an antilipid accumulation in adipocytes from hBM-MSCs by AP. The compound may potentially be a novel therapeutic agent for the treatment of obesity as well as obesity-related diseases.

Keywords: accumulation; accumulation adipocytes; adipocytes derived; lipid droplet; droplet accumulation

Journal Title: Journal of agricultural and food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.