Some food components can regulate the intestinal barrier function. Herein, the effect of transglutaminase-type oligochitosan glycation on caseinate hydrolysate for its ability to maintain intestinal epithelial integrity and the tight… Click to show full abstract
Some food components can regulate the intestinal barrier function. Herein, the effect of transglutaminase-type oligochitosan glycation on caseinate hydrolysate for its ability to maintain intestinal epithelial integrity and the tight junction (TJ) structure was investigated by assessing and comparing the bioactivities of glycated caseinate hydrolysate and caseinate hydrolysate against the lipopolysaccharide-induced barrier damage in the model cells (rat intestinal epithelial IEC-6 cells). The results from liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that oligochitosan glycation occurred at the Gln residues of α-S1-casein and α-S2-casein. The two hydrolysates retarded the lipopolysaccharide cytotoxicity toward IEC-6 cells and enhanced the barrier integrity by increasing the transepithelial electrical resistance or decreasing the paracellular permeability. In addition, these two hydrolysates could upregulate both mRNA and protein expression of three TJ proteins in IEC-6 cells. More importantly, the glycated caseinate hydrolysate had higher potential than caseinate hydrolysate to protect IEC-6 cells against the lipopolysaccharide-induced barrier damage, suggesting that the transglutaminase-mediated oligochitosan glycation of proteins is a useful approach to enforce protein biofunctions in the intestine.
               
Click one of the above tabs to view related content.