LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Taste-Active Dipeptides from Hydrolyzed Mushroom Protein Enhance Saltiness.

Photo from wikipedia

An activity-guided fractionation approach applied to thermally treated, enzymatically hydrolyzed mushroom, Agaricus bisporus L., protein led to the identification of several saltiness- and kokumi-enhancing peptides. The identification was accomplished by… Click to show full abstract

An activity-guided fractionation approach applied to thermally treated, enzymatically hydrolyzed mushroom, Agaricus bisporus L., protein led to the identification of several saltiness- and kokumi-enhancing peptides. The identification was accomplished by employing a combination of solid-phase extraction (SPE), gel-permeation chromatography (GPC), and semipreparative reverse-phase high-performance liquid chromatography (RP-HPLC), coupled with sensory analysis. As a result, this study led to the identification of a collection of common mushroom derived tastants, including 5'-mononucleotides and free amino acids, along with several taste-modulating pyroglutamyl dipeptides, including pyroglutamylcysteine (pGlu-Cys), pyroglutamylvaline (pGlu-Val), pyroglutamylaspartic acid (pGlu-Asp), pyroglutamylglutamic (pGlu-Glu), and pyroglutamylproline (pGlu-Pro). The taste-modulating thresholds for the pyroglutamyl dipeptides were calculated in a model mushroom broth containing natural concentrations of guanosine 5'-monophosphate and 14 amino acids, all with dose-over-threshold (DoT) factors ≥1. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to quantitate the pyroglutamyl dipeptides, and their concentrations ranged from 2 to 58 μmol/L; however, they were determined to be present in the hydrolysate below their individual taste-modulating thresholds. Despite being present below their individual thresholds, when the dipeptides were collectively added to a model mushroom broth at their natural concentrations (143 μmol/L combined), both salty (p = 0.0061) and kokumi (p = 0.0025) taste attributes were significantly enhanced, demonstrating a synergistic subthreshold taste-modulating effect. This study lays the groundwork for future investigations on the saltiness-enhancing potential of mixtures of subthreshold levels of pyroglutamyl dipeptides found in mushrooms and other sources.

Keywords: taste; protein; hydrolyzed mushroom; taste modulating; pyroglutamyl dipeptides; mushroom

Journal Title: Journal of agricultural and food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.