Sweetpotato [Ipomoea batatas (L.) Lam.] is a major tuberous root crop that is rich in flavonoids. Here, we discovered a spontaneous mutation in the color of the leaf vein base… Click to show full abstract
Sweetpotato [Ipomoea batatas (L.) Lam.] is a major tuberous root crop that is rich in flavonoids. Here, we discovered a spontaneous mutation in the color of the leaf vein base (LVB) and root skin (RS) in the Zheshu 81 cultivar. The flavonoid and anthocyanin metabolites and molecular mechanism were analyzed using metabolome and transcriptome data. Compared to the wild type, 13 differentially accumulated metabolites (DAMs) in the LVB and 59 DAMs in the RS were all significantly downregulated. Moreover, all the anthocyanin metabolites decreased significantly. The differentially expressed genes (DEGs) encoding the key enzymes in the later enzymatic reaction of anthocyanin and flavonoid were significantly downregulated in the mutant. The expression trends of the transcription factor MYB were evidently related to the anthocyanin content. These results offer insights into the coloration in the LVB and RS and a theoretical basis for determining the regulation of flavonoid and anthocyanin synthesis in sweetpotato.
               
Click one of the above tabs to view related content.