LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Temperature-Responsive Rosin-Derived Supramolecular Hydrogels Constructed by New Semicircular Aggregates.

Photo from wikipedia

A highly water-soluble rosin-based surfactant (C14-MPA-Na) was synthesized. Novel temperature-responsive supramolecular hydrogels were further prepared using C14-MPA-Na. The microstructure and the mechanical properties of the hydrogels were investigated. Unexpectedly, instead… Click to show full abstract

A highly water-soluble rosin-based surfactant (C14-MPA-Na) was synthesized. Novel temperature-responsive supramolecular hydrogels were further prepared using C14-MPA-Na. The microstructure and the mechanical properties of the hydrogels were investigated. Unexpectedly, instead of the long one-dimensional structure, a new kind of twisted semicircular aggregate was formed in the hydrogels, which was rarely reported. Besides, the hydrogels possessed excellent shear-recovery properties. Upon heating to 40 °C, the hydrogels transformed into viscoelastic solutions, which were constructed by worm-like micelles. By adjusting the temperature, the hydrogels and the viscoelastic solutions could be freely transformed. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy were used to further explore the possible self-assembly mechanism of C14-MPA-Na. The curved alkane chain which partially overlapped with rosin's rigid skeleton became stretched when heated to 40 °C. The introduction of the rosin rigid skeleton endowed the supramolecular hydrogels with a novel microstructure and contributed to the development of strategies for the utilization of forest resources.

Keywords: spectroscopy; novel temperature; supramolecular hydrogels; rosin; temperature responsive

Journal Title: Journal of agricultural and food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.