LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Production of Lactobionic Acid Using Escherichia coli Capable of Synthesizing Pyrroloquinoline Quinone.

Photo by sharonmccutcheon from unsplash

Lactobionic acid (LBA) is an emerging chemical that has been widely utilized in food, cosmetic, and pharmaceutical industries. We sought to produce LBA using Escherichia coli. LBA can be produced… Click to show full abstract

Lactobionic acid (LBA) is an emerging chemical that has been widely utilized in food, cosmetic, and pharmaceutical industries. We sought to produce LBA using Escherichia coli. LBA can be produced from lactose in E. coli, which is innately unable to produce LBA, by coexpressing a heterologous quinoprotein glucose dehydrogenase (GDH) and a pyrroloquinoline quinone (PQQ) synthesis gene cluster. Using a recombinant E. coli strain, we successfully produced LBA without additional supplementation of PQQ, and changing the type of heterologous GDH improved the LBA production titer and productivity. To further enhance LBA production, culture conditions, such as growth temperature and isopropyl-β-d-1-thiogalactopyranoside concentration, were optimized. Using optimized culture conditions, batch fermentation of the recombinant E. coli strain was performed using a 5 L bioreactor. After fermentation, this strain produced an LBA titer of 209.3 g/L, a yield of 100%, and a productivity of 1.45 g/L/h. To our best knowledge, this is the first study to produce LBA using heterologous GDH in an E. coli strain without any additional cofactors. Our results provide a simple method to produce LBA from lactose in a naturally non-LBA-producing bacterium and lay the groundwork for highly efficient LBA production in E. coli, which is one of the most versatile metabolite-producing bacterial hosts.

Keywords: produce lba; lactobionic acid; lba; production; using escherichia; coli

Journal Title: Journal of agricultural and food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.