Obesity is a global public health problem that endangers human health, and a rapid search for compounds with antiadipogenic activity could provide solutions to overcome this problem. Polyphenols are potential… Click to show full abstract
Obesity is a global public health problem that endangers human health, and a rapid search for compounds with antiadipogenic activity could provide solutions to overcome this problem. Polyphenols are potential antiadipogenic compounds, but the screening strategy, structure-activity relationship (SAR), and elucidation of their mechanisms of action remain poorly understood because of the high diversity of polyphenols. Lipid rafts, enriched with sphingolipids and cholesterol, are considered a potential target of polyphenols for the regulation of cellular processes and diseases. Here, a novel rapid screening active polyphenol strategy that targets the lipid rafts using molecular dynamic simulation was developed and validated by 3T3-L1 preadipocyte assay. The screening strategy is high-throughput, inexpensive, reagent-free, and effort saving. In addition, the SAR and mechanisms of action mediating the differentiation-inhibition of the preadipocyte by polyphenols were well elucidated by utilizing multiple technologies, such as "raft-like liposomes" systems, giant plasma membrane vesicles, noninvasive lipid raft probes, and ultrahigh-resolution microscopy. High inhibitory-activity polyphenols could penetrate deeper into the hydrophobic lipid center, in an inverted V-shaped manner or by insertion of galloyl groups into rafts, thus disrupting the ordered domain of lipid rafts. In contrast, the medium and low inhibitory-activity polyphenols could only localize on the surface of lipid rafts, exerting slight and the weakest interference with a lipid raft structure, respectively. The combined use of reliable technologies could yield new knowledge on the SAR and the molecular mechanisms of polyphenols.
               
Click one of the above tabs to view related content.