LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supplementation with rac-GR24 Facilitates the Accumulation of Biomass and Astaxanthin in Two Successive Stages of Haematococcus pluvialis Cultivation.

The unicellular freshwater green alga Haematococcus pluvialis has attracted much research attention due to its biosynthetic ability for large amounts of astaxanthin, a blood-red ketocarotenoid that is used in cosmetics,… Click to show full abstract

The unicellular freshwater green alga Haematococcus pluvialis has attracted much research attention due to its biosynthetic ability for large amounts of astaxanthin, a blood-red ketocarotenoid that is used in cosmetics, nutraceuticals, and pharmaceuticals. Recently, numerous studies have investigated the functions of natural astaxanthin; however, the high cost of the production of astaxanthin from H. pluvialis cultures restricts its commercial viability. There is an urgent need to fulfill commercial demands by increasing astaxanthin accumulation from H. pluvialis cultures. In this study, we discovered that treatment of H. pluvialis cultures at the beginning of the macrozooid stage (day 0) with 1 μM rac-GR24, a synthetic analogue of strigolactones (a class of phytohormones), led to significant increases in biomass [up to a maximum dry cell weight (DCW) of 0.53 g/L] during the macrozooid stage and astaxanthin (from 0.63 to 5.32% of DCW) during the hematocyst stage. We elucidated that this enhancement of biomass accumulation during the macrozooid stage by rac-GR24 is due to its increasing CO2 utilization efficiency in photosynthesis and carbohydrate biosynthesis. We also found that rac-GR24 stimulated the overproduction of nicotinamide adenine dinucleotide phosphate (NADPH) and antioxidant enzymes in H. pluvialis cultures, which alleviated the oxidative damage caused by reactive oxygen species generated during the hematocyst stage due to the exhaustion of nitrogen supplies. Moreover, rac-GR24 treatment of H. pluvialis synergistically altered the activity of the pathways of fatty acid biosynthesis and astaxanthin esterification, which resulted in larger amounts of astaxanthin being generated by rac-GR24-treated cultures than by controls. In summary, we have developed a feasible and economic rac-GR24-assisted strategy that increases the amounts of biomass and astaxanthin generated by H. pluvialis cultures, and have provided novel insights into the mechanistic roles of rac-GR24 to achieve these effects.

Keywords: gr24; rac gr24; pluvialis cultures; stage

Journal Title: Journal of agricultural and food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.