Fusarium graminearum, the main agent of Fusarium head blight (FHB), can cause serious yield loss and secrete mycotoxins to contaminate grain. Here, the biological activity of trans-2-hexenal (T2H) against F.… Click to show full abstract
Fusarium graminearum, the main agent of Fusarium head blight (FHB), can cause serious yield loss and secrete mycotoxins to contaminate grain. Here, the biological activity of trans-2-hexenal (T2H) against F. graminearum was determined and its mode of action (MOA) was investigated. Furthermore, surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS), bioinformatic analysis, and gene knockout technique were combined to identify the binding proteins of T2H in F. graminearum cells. T2H exhibited satisfactory inhibitory activity against F. graminearum in vitro. Good lipophilicity greatly enhanced the affinity of T2H to F. graminearum mycelia and further caused membrane damage. The FgTRR (thioredoxin reductase) gene negatively regulates the sensitivity of F. graminearum to T2H by reducing the generation of reactive oxygen species (ROS) induced by T2H. Two mutant strains with FgSLX1 (structure-specific endonuclease subunit) and FgCOPB (coatomer subunit β) genes knockout showed decreased sensitivity to T2H, suggesting that these two genes may be involved in the antimicrobial activity of T2H. Taken together, T2H can inhibit F. graminearum growth by multiple MOAs and can be used as a biofumigant to control the occurrence of FHB in the field.
               
Click one of the above tabs to view related content.