LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coexposure of Cyclopiazonic Acid with Aflatoxin B1 Involved in Disrupting Amino Acid Metabolism and Redox Homeostasis Causing Synergistic Toxic Effects in Hepatocyte Spheroids.

Cyclopiazonic acid (CPA), an emerging toxin, has been found in various foods such as corn, peanuts, and figs. Aspergillus flavus can produce CPA, leading to coexposure with highly toxic aflatoxin… Click to show full abstract

Cyclopiazonic acid (CPA), an emerging toxin, has been found in various foods such as corn, peanuts, and figs. Aspergillus flavus can produce CPA, leading to coexposure with highly toxic aflatoxin B1 (AFB1), but the mechanism of their combined action is not clear. In this study, cocultured hepatocyte spheroids were used as the evaluation model, and two concentration settings of isotoxicity and different toxicity ratios were used to investigate the combined toxic effects. Metabolomics was subsequently used to analyze the potential mechanisms underlying the effects of their exposure. AFB1 and CPA might exhibit stronger cytotoxicity, with significant combined effects on mitochondrial morphology, activity, and reactive oxygen levels. The gene expression analysis revealed that the overexpression of AKT genes could mitigate the combined effects of AFB1 and CPA to some extent. Metabolomics analysis indicated that AFB1 and CPA significantly downregulated the metabolism of l-aspartate and antioxidant substances (e.g., penicillamine, myricetin, and ethanolamine). The pathway enrichment analysis also revealed a large impact on amino acid metabolism, likely affecting intracellular redox homeostasis. In addition, the presence of CPA affects intracellular glucose metabolism and lipid metabolism pathways. This study suggested a direction for future research on relevant toxic pathways and provided possible ideas for inhibiting or mitigating toxicity.

Keywords: hepatocyte spheroids; cpa; metabolism; toxic effects; cyclopiazonic acid; acid

Journal Title: Journal of agricultural and food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.