LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bifidobacterium longum BL-10 with Antioxidant Capacity Ameliorates Lipopolysaccharide-Induced Acute Liver Injury in Mice by the Nuclear Factor-κB Pathway.

Photo by markusspiske from unsplash

Bifidobacterium longum is frequently utilized and has broad prospects for preventing liver injury. The current research assessed the antioxidant capacity of B. longum BL-10 and probed its mechanism for ameliorating… Click to show full abstract

Bifidobacterium longum is frequently utilized and has broad prospects for preventing liver injury. The current research assessed the antioxidant capacity of B. longum BL-10 and probed its mechanism for ameliorating lipopolysaccharide (LPS)-induced acute liver injury (ALI). B. longum BL-10-encoded 15 antioxidant genes showed strong reducing power activity and scavenging activity of DPPH, hydroxyl radicals, and superoxide anions. The intragastric administration of B. longum BL-10 resulting in a marked reduction in liver function indicators (alanine aminotransferase, aspartate aminotransferase, total bilirubin, and total bile acid) and proinflammatory cytokines (TNF-α, IFN-γ, and IL-6) was indicative of ALI recovery. Following 16s RNA analysis, B. longum BL-10 significantly altered the richness of genera, as for the Escherichia-Shigella, Lachnospiraceae_NK4A136_group, and Clostridia_UCG-014, dramatically contributing to the formation of acetic acid and butyric acid. Meanwhile, their metabolites regulated the TLR4/NF-κB signaling pathways to alleviate hepatic injury symptoms. Overall, all the results demonstrated that B. longum BL-10 had excellent efficiency in preventing LPS-induced ALI.

Keywords: liver injury; induced acute; bifidobacterium longum; antioxidant capacity; longum; injury

Journal Title: Journal of agricultural and food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.