LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geniposide Alleviates Oxidative Damage in Hepatocytes through Regulating miR-27b-3p/Nrf2 Axis.

Photo by nichtraucherinitiative from unsplash

Geniposide (GEN), a main compound extracted from Gardenia jasminoides fruit, has various biological activities including anti-inflammation, cellular damage alleviation, neuroprotection, and others. However, the effect of GEN on oxidative stress… Click to show full abstract

Geniposide (GEN), a main compound extracted from Gardenia jasminoides fruit, has various biological activities including anti-inflammation, cellular damage alleviation, neuroprotection, and others. However, the effect of GEN on oxidative stress in hepatic cells is yet to be investigated. Our study uncovered that GEN eliminated excess intracellular free radicals by activating the Nrf2/ARE signaling pathway in H2O2-treated hepatocytes, while the protective effect was blocked by ML385 (an inhibitor of Nrf2). Moreover, H2O2 led to upregulation of miR-27b-3p in L02 cells, which was restrained by GEN. Overexpression of miR-27b-3p greatly weakened the antioxidant capacity of GEN in hepatocytes via directly targeting the Nrf2 gene. Our findings indicated that GEN treatment recovered H2O2-induced oxidative stress via targeting miR-27b-3p and thereby enhanced the antioxidant capacity by stimulating nuclear translocation and accumulation of Nrf2. These findings suggest that inhibition of miR-27b-3p to activate the Nrf2/ARE pathway by GEN is a potential alternative for hepatic oxidative damage alleviation.

Keywords: oxidative damage; geniposide; gen; mir 27b

Journal Title: Journal of agricultural and food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.