LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Basis for the Simultaneous Enhancement of the Aroma-Generating Capacity and Bioactivity of Maillard Reaction Precursors through Mechanochemistry.

Photo from wikipedia

Ball milling at ambient temperatures can accelerate the formation and accumulation of early-stage Maillard reaction intermediates considered important precursors of aromas and antioxidants. In this study, using chemical and biological… Click to show full abstract

Ball milling at ambient temperatures can accelerate the formation and accumulation of early-stage Maillard reaction intermediates considered important precursors of aromas and antioxidants. In this study, using chemical and biological assays, we explored the potential of sequential milling and heating to enhance the antioxidant and aroma-generating capacity of Maillard model systems. Milling (30 Hz/30 min) followed by dry heating (90 °C/30 min) of glycine or lysine with glucose significantly increased not only the intensity of their aroma-active compounds as analyzed by headspace-gas chromatography/mass spectrometry (HS-GC/MS) but also their free radical scavenging capacity as assessed by 2,2'-azino-bis-(3-ethylbenzothiazoneline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assays. This was attributed to the increased formation of redox-active endiol moieties and precursors of N,N-dialkyl-pyrazinium radical cation in the lysine system assessed by electrospray ionization-quadrupole time-of-flight/tandem mass spectrometry (ESI-QqTOF/MS/MS) analysis. The test samples also inhibited NO generation and cellular oxidative stress in RAW 264.7 murine macrophage cells, indicating size reduction induced by milling promoted paracellular absorption.

Keywords: maillard reaction; capacity; generating capacity; aroma generating

Journal Title: Journal of agricultural and food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.