LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rational Synthesis of a Stable Rod MOF for Ultrasensitive Detection of Nitenpyram and Nitrofurazone in Natural Water Systems.

Photo from wikipedia

Overuse of nitenpyram and nitrofurazone in agricultural products poses enormous risks to ecosystems, and effective detection and quantification of these residual pollutants are of great concern. Although several strategies have… Click to show full abstract

Overuse of nitenpyram and nitrofurazone in agricultural products poses enormous risks to ecosystems, and effective detection and quantification of these residual pollutants are of great concern. Although several strategies have been established for detecting nitenpyram and nitrofurazone in water, searching for a new sensor material with great sensitivity, selectivity, and recyclability remains challenging. Here, we design and synthesize a stable metal-organic framework (MOF) (Zn-CPTA) by employing an organic linker based on the coordination features of benzene-1,4-dicarboxylate and picolinic acid. Zn-CPTA is a 3D framework built from Zn-O-Zn chains called rod secondary building units, which contains 1D open channels modified by uncoordinated carboxyl O atoms and exhibits impressive chemical stability in aqueous solutions within a pH range from 2 to 12. Especially, fluorescent Zn-CPTA can quickly and sensitively detect nitenpyram and nitrofurazone in aqueous solutions with a high quenching constant and low detection limit (LOD) (KSV values for nitenpyram and nitrofurazone are 1.67 × 104 and 1.02 × 105 M-1 with LOD of 0.625 and 0.126 μM, respectively), as well as outstanding selectivity and recyclability. Notably, the LOD value is the lowest among the reported MOFs used for nitrofurazone detection. Besides, experiments and density functional theory calculations are combined to explain the quenching mechanism. Finally, the practical application of Zn-CPTA was further explored in real environment samples with satisfactory recoveries.

Keywords: synthesis stable; water; detection; nitenpyram nitrofurazone; rational synthesis; rod

Journal Title: Journal of agricultural and food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.