LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co-inducible Catabolism of 2-Naphthol Initiated by Hydroxylase CehC1C2 in Rhizobium sp. X9 Removed Its Ecotoxicity.

Photo by vedranafilipovic from unsplash

2-Naphthol, which originates from various industrial activities, is widely disseminated through the discharge of industrial wastewater and is, thus, harmful to the water ecosystem, agricultural production, and human health. In… Click to show full abstract

2-Naphthol, which originates from various industrial activities, is widely disseminated through the discharge of industrial wastewater and is, thus, harmful to the water ecosystem, agricultural production, and human health. In this study, the carbaryl degrading strain Rhizobium sp. X9 was proven to be able to degrade 2-naphthol and reduce its toxicity to rice (Oryza sativa) and Chlorella ellipsoidea. Two-component hydroxylase CehC1C2 is responsible for the initial step of degradation and generates 1,2-dihydroxynaphthalene, which is further degraded by the ceh cluster. The transcription of gene cluster cehC1C2 could be induced when both 2-naphthol and glucose were added. A bioinformatic analysis revealed that two transcriptional regulators, the inhibitor CehR2 and the activator CehR3, could be involved in this process. Our study elucidated the molecular mechanism of microbial degradation of 2-naphthol and provided an effective strategy for the in situ remediation of 2-naphthol contamination in the environment.

Keywords: catabolism naphthol; inducible catabolism; hydroxylase cehc1c2; cehc1c2; rhizobium

Journal Title: Journal of agricultural and food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.