Autophagy flux plays a significant protective role in type 2 diabetes mellitus (T2DM). However, the mechanisms by which autophagy mediates insulin resistance (IR) to ameliorate T2DM remain unclear. This study… Click to show full abstract
Autophagy flux plays a significant protective role in type 2 diabetes mellitus (T2DM). However, the mechanisms by which autophagy mediates insulin resistance (IR) to ameliorate T2DM remain unclear. This study explored the hypoglycemic effects and mechanisms of walnut-derived peptides (fraction 3-10 kDa and LP5) in streptozotocin and high-fat-diet-induced T2DM mice. Findings revealed that walnut-derived peptides reduced the levels of blood glucose and FINS and ameliorated IR and dyslipidemia. They also increased SOD and GSH-PX activities and inhibited the secretion of TNF-α, IL-6, and IL-1β. Additionally, they increased the levels of ATP, COX, SDH, and MMP of liver mitochondria. Western blotting indicated that walnut-derived peptides up-regulated LC3-II/LC3-I and Beclin-1 expression, while they down-regulated p62 expression, which may be associated with the activation of the AMPK/mTOR/ULK1 pathway. Finally, the AMPK activator (AICAR) and inhibitor (Compound C) were used to verify that LP5 could activate autophagy through the AMPK/mTOR/ULK1 pathway in IR HepG2 cells.
               
Click one of the above tabs to view related content.