LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Separation and Purification of Recombinant β-Glucosidase with Hydrophobicity and Thermally Responsive Property from Cell Lysis Solution by Foam Separation and Further Purification.

Photo by eiskonen from unsplash

The aim of this study was to separate and purify recombinant β-glucosidase (GLEGB) with elastin-like polypeptide (ELP) and graphene-binding peptide (GB) from cell lysis solution by foam separation and further… Click to show full abstract

The aim of this study was to separate and purify recombinant β-glucosidase (GLEGB) with elastin-like polypeptide (ELP) and graphene-binding peptide (GB) from cell lysis solution by foam separation and further purification. The study of foam property of GLEGB cell lysis solution indicated that it had excellent foaming property and foam stability, which was suitable for foam separation. This could be due to the GB tag with hydrophobicity, which made the recombinant β-glucosidase with GB preferentially adsorb on the surface of bubbles. At optimum operating conditions of foam separation, the enzyme activity recovery of GLEGB could reach 95.63 ± 1.0%. The foam solution of GLEGB was further purified based on the thermally responsive property of the ELP tag, and the purification fold of GLEGB could reach 29.6 ± 0.5 at the optimum operating conditions. The prominent purification effect indicates that this technique is a simple and efficient technique for the separation and purification of recombinant enzymes.

Keywords: foam separation; purification; separation purification; solution; separation

Journal Title: Journal of agricultural and food chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.