LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cysteine-Induced pH-Dependent Formation of Thiols and Sulfides or 2-Acetylthiazole and Pyrazines during Thermal Treatment of N-(1-Deoxy-d-xylulos-1-yl)-alanine.

Photo by richardrschunemann from unsplash

The influence of pH was studied on volatile flavor formation during thermal treatment of an Amadori rearrangement product (ARP) with or without the addition of cysteine (Cys). The formation of… Click to show full abstract

The influence of pH was studied on volatile flavor formation during thermal treatment of an Amadori rearrangement product (ARP) with or without the addition of cysteine (Cys). The formation of thiols and sulfides or 2-acetylthiazole and pyrazines induced by Cys during thermal degradation of ARP was pH-dependent. At low pH levels, the hydrolysis of Cys to hydrogen sulfide (H2S) was promoted, giving rise to the increase of thiols and sulfides with an obvious meaty aroma. However, alkaline conditions were beneficial for enhancing the cyclization or transformation of imine to the enol structure, which strengthened the formation of 2-acetylthiazole and pyrazines with a roasted and nutty aroma. The imine was derived from the nucleophilic addition of Cys and methylglyoxal (MGO) and subsequent decarboxylation. At pH 8, Cys-induced variation of the flavor profile was weakened during thermal degradation of ARP. Accordingly, the combinational effect of pH and added Cys could be beneficial for achieving the desirable flavors during thermal processing of ARP.

Keywords: acetylthiazole pyrazines; cys; formation thiols; thiols sulfides; thermal treatment

Journal Title: Journal of agricultural and food chemistry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.