The demand for multicomponent foods to meet human energy and nutritional needs has been increasing; however, few studies have addressed the theoretical basis for their preparation. We investigated the effect… Click to show full abstract
The demand for multicomponent foods to meet human energy and nutritional needs has been increasing; however, few studies have addressed the theoretical basis for their preparation. We investigated the effect of the nanoscale polymerization index (DPw) of amylose on the logarithm of slope plot-based kinetics and the mechanism of digestion of starch-lauric acid-β-lactoglobulin protein complexes. Amylose from each of the five Chinese seedless breadfruit species was mixed with breadfruit amylopectin with the highest resistant starch (RS) content to form starch ternary complexes with various amylose DPws. All five complexes exhibited V-type crystalline diffraction and rod-like molecular configuration. Characteristic X-ray diffraction peaks and Fourier transform-infrared spectra of the ternary complexes revealed similar molecular configurations. As the amylose DPw increased, the complexing index, relative crystallinity, short-range order, weight-average molar mass, molecular density index, gelatinization temperature, decomposition temperature, RS, slowly digestible starch (SDS), and speed rate constants at the second hydrolysis stage (k2) increased, whereas the semicrystalline lamellae thickness, mass fractal structure parameter, average characteristic crystallite unit length, radius of gyration, fractal dimension and cavities of granule surface microstructure, final viscosity, interval speed rate from SDS to RS, equilibrium concentration, and glycemic index decreased. The digestion kinetics exhibited highly significant variation according to the physiochemical properties and multiscale supramolecular structure (r > 0.99 or r < -0.99, p < 0.01). Together, these results identify amylose DPw as an important structural factor that markedly affects the kinetics and mechanism of ternary complex digestion and provide a new theoretical direction for the production of starch-based multicomponent foods.
               
Click one of the above tabs to view related content.