The plant root is a key pathway to absorb insecticides from soil and is colonized by beneficial and pathogenic microbial communities. Our study demonstrated that colonizing roots by nitrogen-fixing bacterium… Click to show full abstract
The plant root is a key pathway to absorb insecticides from soil and is colonized by beneficial and pathogenic microbial communities. Our study demonstrated that colonizing roots by nitrogen-fixing bacterium Pseudomonas stutzeri and pathogenic Fusarium graminearum and Pythium ultimum increased the uptake of insecticides into maize roots from soil. An alteration in the permeability of root cells contributed to this increased uptake. For the subsequent root-to-shoot translocation, the relationship between translocation and log P of the compound satisfied a Gaussian distribution. Relatively beneficial P. stutzeri can promote maize seedling growth and increase translocation, whereas Fusarium and Pythium pathogens can retard the seedling growth and reduce the translocation. Furthermore, the relationship between the concentration difference (difference of an insecticide from inoculation treatment to control) and log P also showed a Gaussian distribution. The maximum concentration difference from the Gaussian equation can be applied to assess the capacity of rhizosphere microorganisms to influence translocation.
               
Click one of the above tabs to view related content.