LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving the Catalytic Performance of a Talaromyces leycettanus α-Amylase by Changing the Linker Length.

Photo from wikipedia

A novel α-amylase, Amy13A, that consists of these domains was identified in Talaromyces leycettanus JCM12802: catalytic TIM-barrel fold, domain B, domain C, Thr/Ser-rich linker region, and C-terminal CBM20 domain. The… Click to show full abstract

A novel α-amylase, Amy13A, that consists of these domains was identified in Talaromyces leycettanus JCM12802: catalytic TIM-barrel fold, domain B, domain C, Thr/Ser-rich linker region, and C-terminal CBM20 domain. The wild type and three mutant enzymes were then expressed in Pichia pastoris GS115 to identify the roles of linker length (Amy13A21 and Amy13A33) and CBM20 (Amy13A-CBM) in catalysis. All enzymes had similar enzymatic properties, exhibiting optimal activities at pH 4.5-5.0 and 55-60 °C, but varied in catalytic performance. When using soluble starch as the substrate, Amy13A21 and Amy13A33 showed specific activities (926.3 and 537.8 units/mg, respectively, vs 252.1 units/mg) and catalytic efficiencies (kcat/Km, 25.7 and 22.0 mL s-1 mg-1, respectively, vs 15.4 mL s-1 mg-1) higher than those of the wild type, while Amy13A-CBM performed worse during catalysis. This study reveals the key roles of the CBM and linker length in the catalysis of GH13 α-amylase.

Keywords: amylase; linker; linker length; talaromyces leycettanus; catalytic performance

Journal Title: Journal of agricultural and food chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.