LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Volatile Compound and Gene Expression Analyses Reveal Temporal and Spatial Production of LOX-Derived Volatiles in Pepino (Solanum muricatum Aiton) Fruit and LOX Specificity.

Photo by thoughtcatalog from unsplash

Lipoxygenase (LOX) is an important contributor to aroma compounds in most fresh produce; however, little is known about the LOX pathway in pepino (Solanum muricatum Aiton) fruit. We explored the… Click to show full abstract

Lipoxygenase (LOX) is an important contributor to aroma compounds in most fresh produce; however, little is known about the LOX pathway in pepino (Solanum muricatum Aiton) fruit. We explored the LOX aroma compounds produced by the flesh and the peel and identified eight putative LOX genes expressed in both tissues during fruit growth and development during two consecutive seasons. This study shows that pepino produces C5, C6, and C9 LOX-derived compounds. Odorant C9 volatiles were produced during immature stages with a concomitant decrease when the fruit ripens, whereas C5 and C6 compounds were formed throughout ripening. trans-2-Hexenal and its alcohol were produced in the peel, but not detected in the flesh. The expression of three genes, SmLOXD (putative 13-LOX), SmLOXB, and SmLOX5-like1 (putative 9-LOXs), increased during fruit ripening. These genes may account for aroma volatiles in pepino. Here, we discuss the possible roles of individual LOX genes in pepino.

Keywords: pepino solanum; fruit; lox; muricatum aiton; solanum muricatum

Journal Title: Journal of agricultural and food chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.