LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-Pot Synthesis of Ginsenoside Rh2 and Bioactive Unnatural Ginsenoside by Coupling Promiscuous Glycosyltransferase from Bacillus subtilis 168 to Sucrose Synthase.

Photo by devilcoders from unsplash

Ginsenosides, the major effective ingredients of Panax ginseng, exhibit various biological properties. UDP-glycosyltransferase (UGT)-mediated glycosylation is the last biosynthetic step of ginsenosides and contributes to their immense structural and functional… Click to show full abstract

Ginsenosides, the major effective ingredients of Panax ginseng, exhibit various biological properties. UDP-glycosyltransferase (UGT)-mediated glycosylation is the last biosynthetic step of ginsenosides and contributes to their immense structural and functional diversity. In this study, UGT Bs-YjiC from Bacillus subtilis 168 was demonstrated to transfer a glucosyl moiety to the free C3-OH and C12-OH of protopanaxadiol (PPD) and PPD-type ginsenosides to synthesize natural and unnatural ginsenosides. In vitro assays showed that unnatural ginsenoside F12 (3- O-β-d-glucopyranosyl-12- O-β-d-glucopyranosyl-20( S)-protopanaxadiol) exhibited remarkable activity against diverse human cancer cell lines. A one-pot reaction by coupling Bs-YjiC to sucrose synthase (SuSy) was performed to regenerate UDP-glucose from sucrose and UDP. With PPD as the aglycon, an unprecedented high yield of ginsenosides F12 (3.98 g L-1) and Rh2 (0.20 g L-1) was obtained by optimizing the conversion conditions. This study provides an efficient approach for the biosynthesis of ginsenosides using a UGT-SuSy cascade reaction.

Keywords: ginsenoside; sucrose synthase; unnatural ginsenoside; subtilis 168; one pot; bacillus subtilis

Journal Title: Journal of agricultural and food chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.