This study aimed to investigate the effect of arginine on the expression of slow myosin heavy chain (MyHC) I and its underlying mechanism in porcine skeletal muscle satellite cells. Our… Click to show full abstract
This study aimed to investigate the effect of arginine on the expression of slow myosin heavy chain (MyHC) I and its underlying mechanism in porcine skeletal muscle satellite cells. Our results showed that arginine upregulated the mRNA (1.54 ± 0.08; p < 0.01) and protein (2.01 ± 0.01; p < 0.001) levels of MyHC I. We also showed that arginine upregulated the expression of Akirin2 (1.35 ± 0.1; p < 0.05) and increased the NO content (1.56 ± 0.04; p < 0.001). Akirin2 siRNA abolished arginine-induced upregulation of MyHC I and the increase of the NO content. In addition, arginine significantly increased the phospho-AMP-activated protein kinase (AMPK)/AMPK level (1.33 ± 0.06; p < 0.05), the AMPK content (79.55 ± 0.13; p < 0.001), and the AMPKα2 mRNA level (2.03 ± 0.20; p < 0.01). AMPKα2 silencing or AMPK inhibitor Compound C abolished arginine-induced upregulation of MyHC I. Our results provide, for the first time, evidence for the involvement of Akirin2 and the AMPK signaling pathway in arginine-induced MyHC I expression in porcine skeletal muscle satellite cells.
               
Click one of the above tabs to view related content.