LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metabolic Engineering of Four GATA Factors to Reduce Urea and Ethyl Carbamate Formation in a Model Rice Wine System.

Photo by tomonine from unsplash

Urea is the most important precursor of ethyl carbamate (EC), a harmful carcinogenic product, in fermented wines. In this study, the effects of four GATA transcriptional factors (Gln3p, Gat1p, Dal80p… Click to show full abstract

Urea is the most important precursor of ethyl carbamate (EC), a harmful carcinogenic product, in fermented wines. In this study, the effects of four GATA transcriptional factors (Gln3p, Gat1p, Dal80p ,and Gzf3p) on extracellular urea and EC formation and transcriptional changes in urea degradation related genes ( DUR1,2 and DUR3) were examined. Compared to the WT strain, the Δ gzf3 mutant showed 18.7% urea reduction and exhibited synergistic effects with overexpressed Gln3p1-653 and Gat1p1-375 on extracellular urea reduction. Moreover, Δ gzf3+Gln3p1-653 and Δ gzf3+Gat1p1-375 showed significant 38.7% and 43.7% decreases in urea concentration and 41.7% and 48.5% decreases in EC concentration, respectively, in a model rice wine system. These results provide a promising way to reduce urea and EC formation during wine fermentation and raise some cues for the regulations of the four GATA transcriptional factors on the expression of individual nitrogen catabolite repression sensitive genes and their related metabolism pathway.

Keywords: rice wine; formation; model rice; ethyl carbamate; four gata

Journal Title: Journal of agricultural and food chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.