LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization and Thermal Denaturation Kinetic Analysis of Recombinant l-Amino Acid Ester Hydrolase from Stenotrophomonas maltophilia.

Photo by sharonmccutcheon from unsplash

Stenotrophomonas maltophilia HS1 exhibits l-amino acid ester hydrolase (SmAEH) activity, which can synthesize dipeptides such as Ile-Trp, Val-Gly, and Trp-His from the corresponding amino acid methyl esters and amino acids.… Click to show full abstract

Stenotrophomonas maltophilia HS1 exhibits l-amino acid ester hydrolase (SmAEH) activity, which can synthesize dipeptides such as Ile-Trp, Val-Gly, and Trp-His from the corresponding amino acid methyl esters and amino acids. The gene encoding SmAEH was cloned and expressed in Escherichia coli and was purified and characterized. SmAEH shared 77% sequence identity with a known amino acid ester hydrolase (AEH) from Xanthomonas citri, which belongs to a class of β-lactam antibiotic acylases. The thermal stability of SmAEH was evaluated using various mathematical models to assess its industrial potential. First-order kinetics provided the best description for the inactivation of the enzyme over a temperature range of 35-50 °C. Decimal reduction time ranged from 212.76 to 3.44 min, with a z value of 8.06 °C, and the deactivation energy was 204.1 kJ mol-1.

Keywords: ester hydrolase; acid ester; amino acid; stenotrophomonas maltophilia

Journal Title: Journal of agricultural and food chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.