LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering Saccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose.

Photo by austriannationallibrary from unsplash

Protopanaxadiol (PPD), an active triterpene compound, is the precursor of high-value ginsenosides. In this study, we report a strategy for the enhancement of PPD production in Saccharomyces cerevisiae by cofermentation… Click to show full abstract

Protopanaxadiol (PPD), an active triterpene compound, is the precursor of high-value ginsenosides. In this study, we report a strategy for the enhancement of PPD production in Saccharomyces cerevisiae by cofermentation of glucose and xylose. In mixed sugar fermentation, strain GW6 showed higher PPD titer and yield than that obtained from glucose cultivation. Then, engineering strategies were implemented on GW6 to enhance the PPD yields, such as adjustment of the central carbon metabolism, optimization of the mevalonate pathway, reinforcement of the xylose assimilation pathway, and regulation of cofactor balance, namely, overexpression of xPK/PTA, ERG10/ERG12/ERG13, XYL1/XYL2/TAL1, and POS5, respectively. In particular, the final obtained strain GW10, harboring overexpressed POS5, exhibited the highest PPD yield, which was 2.06 mg of PPD/g of mixed sugar. In a 5-L fermenter, PPD titer reached 152.37 mg/L. These promising results demonstrate the great advantages of mixed sugar over glucose for high-yield production of PPD.

Keywords: protopanaxadiol; saccharomyces cerevisiae; production; ppd; glucose xylose; cofermentation glucose

Journal Title: Journal of agricultural and food chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.