LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Crossing Parent and Environment on the Metabolite Profiles of Progenies Generated from a Low Phytic Acid Rice ( Oryza sativa L.) Mutant.

Photo from wikipedia

The low phytic acid ( lpa) rice mutant Os-lpa-MH86-1, exhibiting a mutation-induced metabolite signature (i.e., increased levels of sugars, sugar alcohols, amino acids, phytosterols, and biogenic amines), was crossed with… Click to show full abstract

The low phytic acid ( lpa) rice mutant Os-lpa-MH86-1, exhibiting a mutation-induced metabolite signature (i.e., increased levels of sugars, sugar alcohols, amino acids, phytosterols, and biogenic amines), was crossed with two commercial wild-type cultivars. The resulting progenies of generation F8 harvested at three independent field trials were subjected to a GC/MS-based metabolite profiling approach. Statistical assessments via multivariate and univariate analyses demonstrated that the environment had a strong impact on the metabolite profiles of the resulting progenies. In addition, the metabolites of homozygous lpa progenies were significantly influenced by the lipid profiles of the wild-type cultivars employed as the crossing parents. However, for each individual field trial, both the lpa trait and the mutation-specific metabolite signature were consistently expressed in the homozygous lpa mutant progenies of the two crosses. The data underline that cross-breeding can be employed as a tool to generate lpa progeny rice seeds stably exhibiting the mutation-induced metabolic traits.

Keywords: phytic acid; rice; low phytic; metabolite profiles; lpa

Journal Title: Journal of agricultural and food chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.