Accumulating pesticide (and herbicide) residues in soils have become a serious environmental problem. This study focused on identifying the removal of two widely used pesticides, isoproturon (IPU) and acetochlor (ACT),… Click to show full abstract
Accumulating pesticide (and herbicide) residues in soils have become a serious environmental problem. This study focused on identifying the removal of two widely used pesticides, isoproturon (IPU) and acetochlor (ACT), by a genetically developed paddy (or rice) plant overexpressing an uncharacterized glycosyltransferase (IRGT1). IRGT1 conferred plant resistance to isoproturon-acetochlor, which was manifested by attenuated cellular injury and alleviated toxicity of rice under isoproturon-acetochlor stress. A short-term study showed that IRGT1-transformed lines removed 33.3-48.3% of isoproturon and 39.8-53.5% of acetochlor from the growth medium, with only 59.5-72.1 and 58.9-70.4% of the isoproturon and acetochlor remaining in the plants compared with the levels in untransformed rice. This phenotype was confirmed by IRGT1-expression in yeast ( Pichia pastoris) which grew better and contained less isoproturon-acetochlor than the control cells. A long-term study showed that isoproturon-acetochlor concentrations at all developmental stages were significantly lower in the transformed rice, which contain only 59.3-69.2% (isoproturon) and 51.7-57.4% (acetochlor) of the levels in wild type. In contrast, UPLC-Q-TOF-MS/MS analysis revealed that more isoproturon-acetochlor metabolites were detected in the transformed rice. Sixteen metabolites of isoproturon and 19 metabolites of acetochlor were characterized in rice for Phase I reactions, and 9 isoproturon and 13 acetochlor conjugates were characterized for Phase II reactions in rice; of these, 7 isoproturon and 6 acetochlor metabolites and conjugates were reported in plants for the first time.
               
Click one of the above tabs to view related content.