Understanding the interaction mechanism between proteins and surfactants is conducive to the application of protein/surfactant mixtures in the food industry. The present study investigated the interaction mechanism of casein with… Click to show full abstract
Understanding the interaction mechanism between proteins and surfactants is conducive to the application of protein/surfactant mixtures in the food industry. The present study investigated the interaction mechanism of casein with cationic Gemini surfactant (BQAS), anionic Gemini surfactant (SGS), anionic single-chain surfactant (sodium dodecyl sulfate [SDS]), and two biosurfactants (rhamnolipid [RL] and lactone sophorolipid [SL]) at the interface and in bulk phase. BQAS/casein and SDS/casein mixtures exhibit a strong synergistic effect on the surface activity. For SGS, RL, and SL, the formation of surfactant/casein complexes caused no improvement in surface activity. Dilational elasticity results indicate the displacement of casein by SGS, RL, and SL at the surface. However, the BQAS/casein complexes manifested varying dilational properties from pure casein surface. The strong electrostatic interaction between BQAS and casein produced large-size precipitate particles. For other surfactants, no precipitate particles formed. Determination of ζ-potential, UV-vis absorption spectra, and fluorescence spectra demonstrated the stronger interaction of BQAS and SDS with casein than that of SGS, RL, and SL. Addition of BQAS initially increased and then decreased the α-helix structure of casein. For SGS, RL, and SL, no noticeable change occurred in the casein structure. However, the formation of SDS/casein complexes was conducive to the casein structure. In conclusion, the interaction between BQAS and casein is similar to that of cationic single-chain surfactant. Furthermore, SGS exhibits a significantly different interaction mechanism from the corresponding monomer (SDS), possibly resulting from its excellent interfacial activity, low critical micelle concentration values, and strong self-assembly capability. For RL and SL, the weak interaction is attributed to the relatively complicated structure and less charged degree of hydrophilic headgroups.
               
Click one of the above tabs to view related content.