This work was devoted to the equilibrium solubility of 2-nitrophenylacetic acid in 13 neat solvents ethylene glycol (EG), methanol, ethanol, acetonitrile, n-propanol, isopropanol, water, n-butanol, N,N-dimethylformamide (DMF), isobutanol, cyclohexane, ethyl… Click to show full abstract
This work was devoted to the equilibrium solubility of 2-nitrophenylacetic acid in 13 neat solvents ethylene glycol (EG), methanol, ethanol, acetonitrile, n-propanol, isopropanol, water, n-butanol, N,N-dimethylformamide (DMF), isobutanol, cyclohexane, ethyl acetate, and 1,4-dioxane ranging from 283.15 to 328.15 K. All determinations were made by the shake-flask technique at a pressure of p = 101.2 kPa. The mole fraction solubility magnitudes of 2-nitrophenylacetic acid increased gradually with the rising investigated temperature and presented a decreasing trend in the 13 neat solvents: DMF > (1,4-dioxoane, methanol) > ethanol (ethyl acetate) > n-propanol > n-butanol > isopropanol > EG > acetonitrile > isobutanol > water > cyclohexane. The method of linear solvation energy relationships was employed here to inspect the solvent–solvent and solute–solvent interactions. The solvent descriptors of the Hildebrand solubility parameter and polarizability/dipolarity presented great influence upon the solubility magnitudes of the solute 2-nitrophenylacetic acid. The obtained solubility values in mole fraction were correlated mathematically via four models/equations, namely, λh, non-random two-liquid, Apelblat, and Wilson. The maximum value of relative average deviation (RAD) was 3.68 × 10–2, and the maximum value of root-mean-square deviations was 116.78 × 10–4. The RAD values by using the Apelblat equation were smaller than that by using the other equations/models for a fixed solvent. Additionally, the dissolution properties, activity coefficient, and reduced excess enthalpy under the conditions of infinite dilution were obtained through the Wilson model.
               
Click one of the above tabs to view related content.