LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assembly of Amphiphilic Block Copolymers and Nanoparticles in Solution: Coarse-Grained Molecular Simulation Study

Photo from wikipedia

Controlled assembly of amphiphilic block copolymers (BCPs) and inorganic nanoparticles (NPs) into hybrid materials is desirable for a broad range of applications such as biological or nonbiological cargo delivery, imaging… Click to show full abstract

Controlled assembly of amphiphilic block copolymers (BCPs) and inorganic nanoparticles (NPs) into hybrid materials is desirable for a broad range of applications such as biological or nonbiological cargo delivery, imaging contrast agents, pollutant capture, chemical sensing, and separation/purification applications. There has been growing interest in changing solvent quality for BCPs by mixing solvents and utilizing the effective solvophobicity of the BCP block(s) to tailor the assembled structure, namely the size and shape, composition, and spatial arrangement of the components in the NP–BCP hybrid assemblies. In this work, we present a comprehensive coarse-grained molecular dynamics (MD) simulations study exploring the impact of varying solvophobicity on assembly of amphiphilic BCP and NP as a function of BCP composition and sequence and NP affinity to either or both block(s) of BCP. We quantify the solvophobicity marking the transition from disassembled solution to assembled state (e.g., micelles). We ...

Keywords: block; assembly amphiphilic; amphiphilic block; coarse grained; grained molecular; block copolymers

Journal Title: Journal of Chemical & Engineering Data
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.