LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine Learning Predicts Degree of Aromaticity from Structural Fingerprints

Photo by cokdewisnu from unsplash

Prediction of whether a compound is 'aromatic' is at first glance a relatively simple task - does it obey Hückel's rule (planar cyclic π-system with 4n+2 electrons) or not? However,… Click to show full abstract

Prediction of whether a compound is 'aromatic' is at first glance a relatively simple task - does it obey Hückel's rule (planar cyclic π-system with 4n+2 electrons) or not? However, aromaticity is far from a binary property, and there are distinct variations in chemical and biological behaviour between different systems which obey Hückel's rule and are thus classified as aromatic. To that end, the aromaticity of each molecule in a large public dataset [1] [2] was quantified by an extension of the work of Raczyńska et al. [3]. Building on this data, a method is proposed for machine-learning the degree of aromaticity for each aromatic ring in a molecule. Categories are derived from the numeric results, allowing the differentiation of structural patterns between them and thus better representation of the underlying chemical and biological behaviour in expert and (Q)SAR systems.

Keywords: learning predicts; predicts degree; machine learning; degree aromaticity

Journal Title: Journal of chemical information and modeling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.