LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automated Grouping of Nanomaterials and Read-Across Prediction of Their Adverse Effects Based on Mathematical Optimization

Photo from academic.microsoft.com

In this study, a computational workflow is presented for grouping engineered nanomaterials (ENMs) and for predicting their toxicity-related end points. A mixed integer-linear optimization program (MILP) problem is formulated, which… Click to show full abstract

In this study, a computational workflow is presented for grouping engineered nanomaterials (ENMs) and for predicting their toxicity-related end points. A mixed integer-linear optimization program (MILP) problem is formulated, which automatically filters out the noisy variables, defines the grouping boundaries, and develops specific to each group predictive models. The method is extended to the multidimensional space, by considering the ENM characterization categories (e.g., biological, physicochemical, biokinetics, image etc.) as different dimensions. The performance of the proposed method is illustrated through the application to benchmark data sets and comparison with alternative predictive modeling approaches. The trained models using the above data sets were made publicly available through a user-friendly web service.

Keywords: nanomaterials read; across prediction; optimization; read across; automated grouping; grouping nanomaterials

Journal Title: Journal of chemical information and modeling
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.