LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Reaction Space Exploration with ChemTraYzer-TAD

Photo by joelfilip from unsplash

The development of a reaction model is often a time-consuming process, especially if unknown reactions have to be found and quantified. To alleviate the reaction modeling process, automated procedures for… Click to show full abstract

The development of a reaction model is often a time-consuming process, especially if unknown reactions have to be found and quantified. To alleviate the reaction modeling process, automated procedures for reaction space exploration are highly desired. We present ChemTraYzer-TAD, a new reactive molecular dynamics acceleration technique aimed at efficient reaction space exploration. The new method is based on the basin confinement strategy known from the temperature-accelerated dynamics (TAD) acceleration method. Our method features integrated ChemTraYzer bond-order processing steps for the automatic and on-the-fly determination of the positions of virtual walls in configuration space that confine the system in a potential energy basin. We use the example of 1,3-dioxolane-4-hydroperoxide-2-yl radical oxidation to show that ChemTraYzer-TAD finds more than 100 different parallel reactions for the given set of reactants in less than 2 ns of simulation time. Among the many observed reactions, ChemTraYzer-TAD finds the expected typical low-temperature reactions despite the use of extremely high simulation temperatures up to 5000 K. Our method also finds a new concerted β-scission plus O2 addition with a lower reaction barrier than the literature-known and so-far dominant β-scission.

Keywords: reaction; space exploration; reaction space; chemtrayzer tad

Journal Title: Journal of chemical information and modeling
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.