LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models

Photo by markusspiske from unsplash

The human ether-à-go-go-related gene (hERG) K+ channel plays an important role in cardiac action potentials. The inhibition of the hERG channel may lead to long QT syndrome (LQTS) and even… Click to show full abstract

The human ether-à-go-go-related gene (hERG) K+ channel plays an important role in cardiac action potentials. The inhibition of the hERG channel may lead to long QT syndrome (LQTS) and even sudden cardiac death. Due to severe hERG-related cardiotoxicity, many drugs have been withdrawn from the market. Therefore, it is necessary to estimate the chemical blockade of hERG in the early stage of drug discovery. In this study, we collected 12,850 compounds with hERG inhibition data from the literature and trained a series of hERG blocking classification models based on the MACCS and Morgan fingerprints. A consensus model named HergSPred was generated based on the individual models using voting principles. The accuracy of HergSPred is higher than previous models using identical training and test sets. Moreover, we analyzed the contribution of each input fingerprint to the prediction output to obtain intuitive chemical insights into the hERG inhibition, which allows visualization of warning substructures that may cause cardiotoxicity in the input compound. The model is available at http://www.icdrug.com/ICDrug/T.

Keywords: hergspred accurate; classification; accurate classification; classification herg; herg blockers; herg

Journal Title: Journal of chemical information and modeling
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.