LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting In Vivo Compound Brain Penetration Using Multi-task Graph Neural Networks

Photo from wikipedia

Assessing whether compounds penetrate the brain can become critical in drug discovery, either to prevent adverse events or to reach the biological target. Generally, pre-clinical in vivo studies measuring the… Click to show full abstract

Assessing whether compounds penetrate the brain can become critical in drug discovery, either to prevent adverse events or to reach the biological target. Generally, pre-clinical in vivo studies measuring the ratio of brain and blood concentrations (Kp) are required to estimate the brain penetration potential of a new drug entity. In this work, we developed machine learning models to predict in vivo compound brain penetration (as LogKp) from chemical structure. Our results show the benefit of including in vitro experimental data as auxiliary tasks in multi-task graph neural network (MT-GNN) models. MT-GNNs outperformed single-task (ST) models solely trained on in vivo brain penetration data. The best-performing MT-GNN regression model achieved a coefficient of determination of 0.42 and a mean absolute error of 0.39 (2.5-fold) on a prospective validation set and outperformed all tested ST models. To facilitate decision-making, compounds were classified into brain-penetrant or non-penetrant, achieving a Matthew's correlation coefficient of 0.66. Taken together, our findings indicate that the inclusion of in vitro assay data as MT-GNN auxiliary tasks improves in vivo brain penetration predictions and prospective compound prioritization.

Keywords: brain penetration; vivo compound; brain; task

Journal Title: Journal of chemical information and modeling
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.