LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search

Photo from wikipedia

Designing highly selective molecules for a drug target protein is a challenging task in drug discovery. This task can be regarded as a multiobjective problem that simultaneously satisfies criteria for… Click to show full abstract

Designing highly selective molecules for a drug target protein is a challenging task in drug discovery. This task can be regarded as a multiobjective problem that simultaneously satisfies criteria for various objectives, such as selectivity for a target protein, pharmacokinetic endpoints, and drug-like indices. Recent breakthroughs in artificial intelligence have accelerated the development of molecular structure generation methods, and various researchers have applied them to computational drug designs and successfully proposed promising drug candidates. However, designing efficient selective inhibitors with releasing activities against various homologs of a target protein remains a difficult issue. In this study, we developed a de novo structure generator based on reinforcement learning that is capable of simultaneously optimizing multiobjective problems. Our structure generator successfully proposed selective inhibitors for tyrosine kinases while optimizing 18 objectives consisting of inhibitory activities against 9 tyrosine kinases, 3 pharmacokinetics endpoints, and 6 other important properties. These results show that our structure generator and optimization strategy for selective inhibitors will contribute to the further development of practical structure generators for drug designs.

Keywords: structure; selective inhibitors; structure generator; target protein; selective inhibitor; drug

Journal Title: Journal of Chemical Information and Modeling
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.