LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Building Chemical Property Models for Energetic Materials from Small Datasets Using a Transfer Learning Approach

Photo by homajob from unsplash

For many experimentally measured chemical properties that cannot be directly computed from first-principles, the existing physics-based models do not extrapolate well to out-of-sample molecules, and experimental datasets themselves are too… Click to show full abstract

For many experimentally measured chemical properties that cannot be directly computed from first-principles, the existing physics-based models do not extrapolate well to out-of-sample molecules, and experimental datasets themselves are too small for traditional machine learning (ML) approaches. To overcome these limitations, we apply a transfer learning approach, whereby we simultaneously train a multi-target regression model on a small number of molecules with experimentally measured values and a large number of molecules with related computed properties. We demonstrate this methodology on predicting the experimentally measured impact sensitivity of energetic crystals, finding that both characteristics of the computed dataset and model architecture are important to prediction accuracy of the small experimental dataset. Our directed-message passing neural network (D-MPNN) ML model using transfer learning outperforms direct-ML and physics-based models on a diverse test set, and the new methods described here are widely applicable to modeling many other structure-property relationships.

Keywords: transfer; using transfer; transfer learning; learning approach; property

Journal Title: Journal of chemical information and modeling
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.