We present an improved algorithm to solve the near-congruence problem for rigid molecules and clusters based on the iterative application of assignment and alignment steps with biased Euclidean costs. The… Click to show full abstract
We present an improved algorithm to solve the near-congruence problem for rigid molecules and clusters based on the iterative application of assignment and alignment steps with biased Euclidean costs. The algorithm is formulated as a quasi-local optimization procedure with each optimization step involving a linear assignment (LAP) and a singular value decomposition (SVD). The efficiency of the algorithm is increased by up to 5 orders of magnitude with respect to the original unbiased noniterative method and can be applied to systems with hundreds or thousands of atoms, outperforming all state-of-the-art methods published so far in the literature. The Fortran implementation of the algorithm is available as an open source library (https://github.com/qcuaeh/molalignlib) and is suitable to be used in global optimization methods for the identification of local minima or basins.
               
Click one of the above tabs to view related content.