LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PyCGTOOL: Automated Generation of Coarse-Grained Molecular Dynamics Models from Atomistic Trajectories

Photo from wikipedia

Development of coarse-grained (CG) molecular dynamics models is often a laborious process which commonly relies upon approximations to similar models, rather than systematic parametrization. PyCGTOOL automates much of the construction… Click to show full abstract

Development of coarse-grained (CG) molecular dynamics models is often a laborious process which commonly relies upon approximations to similar models, rather than systematic parametrization. PyCGTOOL automates much of the construction of CG models via calculation of both equilibrium values and force constants of internal coordinates directly from atomistic molecular dynamics simulation trajectories. The derivation of bespoke parameters from atomistic simulations improves the quality of the CG model compared to the use of generic parameters derived from other molecules, while automation greatly reduces the time required. The ease of configuration of PyCGTOOL enables the rapid investigation of multiple atom-to-bead mappings and topologies. Although we present PyCGTOOL used in combination with the GROMACS molecular dynamics engine its use of standard trajectory input libraries means that it is in principle compatible with other software. The software is available from the URL https://github.com/jag1g13/pycgtool as the following doi: 10.5281/zenodo.259330 .

Keywords: dynamics models; molecular dynamics; grained molecular; coarse grained; pycgtool

Journal Title: Journal of chemical information and modeling
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.