LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison Study of Polar and Nonpolar Contributions to Solvation Free Energy.

Photo from wikipedia

In this study, we compared the contributions of polar and nonpolar interactions to the solvation free energy of a solute in solvent, which is decomposed into four different terms based… Click to show full abstract

In this study, we compared the contributions of polar and nonpolar interactions to the solvation free energy of a solute in solvent, which is decomposed into four different terms based on the nature of interactions: (i) electrostatic solvation free energy term counting for the work done to move solute charges from fixed points in some reference environment to their configuration positions in solvent; (ii) solute-solvent van der Waals dispersion interactions; (iii) change on solvent-solvent interactions and solvent entropy due to reorganization of solvent around solute cavity in solvent; and (iv) compensation of electrostatic forces acting on the dielectric surface boundary between solvent and solute. We compared these contributions to each other for a data set of 573 proteins, which were prepared using CHARMM22 and AMBER force fields. In addition, we compared the calculated with experimental hydration free energies for a data set of 642 small molecules, which were prepared using the general AMBER force field. Our results indicated the significance of each term to the total solvation free energy.

Keywords: solvation free; polar nonpolar; study; solvent; free energy

Journal Title: Journal of chemical information and modeling
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.