LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conservation and Relevance of Pharmacophore Point Types

Photo from wikipedia

Pharmacophore models in general use a variety of features for distinct chemical characteristics, such as hydrogen-bond properties, lipohilicity, and ionizability. Usually, features have to match onto their identical type. To… Click to show full abstract

Pharmacophore models in general use a variety of features for distinct chemical characteristics, such as hydrogen-bond properties, lipohilicity, and ionizability. Usually, features have to match onto their identical type. To clarify if this stringent one-to-one assignment is justified, we investigated a set of 581 unique ligands from the BindingDB with known orientation inside the respective binding pockets and conducted a statistical analysis of the likelihood of observed exchanges in between the pharmacophore features, respectively their degree of conservation. To find out if certain features are obsolete, we derived a ranking to determine the most relevant ones. We found that the most conserved one-to-one feature is the negative ionizable (acids), followed by hydrogen-bond donor, positive ionizable (basic nitrogens), hydrogen-bond acceptor, aromatic, nonaromatic π-systems, and other lipophilic characteristics. The most likely exchanges were found between carboxylate groups and hydrogen-bond acceptors and likewise between basic nitrogens and hydrogen-bond donors, which reflects the characteristics of Lewis acids and bases. Exchanges between hydrogen-bond donors and hydrogen-bond acceptors are hardly more likely than by chance. The kind of target (e.g., kinase, phosphatase, protease, phosphodiesterase, nuclear receptor, metal-containing, or transmembrane protein) did not show substantial influence on the degree of conservation. The relevance of the actual pharmacophore features was found to be strongly dependent on the applied ranking scheme. Mutual information ranks all hydrophobic features as least important, whereas the aromatic feature is put into second place by using a geometric series. Both ranking schemes see the negative ionizable feature of higher significance than the positively ionizable feature.

Keywords: feature; bond; hydrogen bond; conservation relevance; pharmacophore

Journal Title: Journal of chemical information and modeling
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.