LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electron Dynamics with the Time-Dependent Density Matrix Renormalization Group.

Photo by jontyson from unsplash

In this work, we simulate the electron dynamics in molecular systems with the time-dependent density matrix renormalization group (TD-DMRG) algorithm. We leverage the generality of the so-called tangent-space TD-DMRG formulation… Click to show full abstract

In this work, we simulate the electron dynamics in molecular systems with the time-dependent density matrix renormalization group (TD-DMRG) algorithm. We leverage the generality of the so-called tangent-space TD-DMRG formulation and design a computational framework in which the dynamics is driven by the exact nonrelativistic electronic Hamiltonian. We show that by parametrizing the wave function as a matrix product state, we can accurately simulate the dynamics of systems including up to 20 electrons and 32 orbitals. We apply the TD-DMRG algorithm to three problems that are hardly targeted by time-independent methods: the calculation of molecular (hyper)polarizabilities, the simulation of electronic absorption spectra, and the study of ultrafast ionization dynamics.

Keywords: electron dynamics; matrix; time; time dependent; dependent density; density matrix

Journal Title: Journal of chemical theory and computation
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.