LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computation of the Protein Conformational Transition Pathway on Ligand Binding by Linear Response-Driven Molecular Dynamics.

Photo from wikipedia

While extremely important for relating the protein structure to its biological function, determination of the protein conformational transition pathway upon ligand binding is made difficult due to the transient nature… Click to show full abstract

While extremely important for relating the protein structure to its biological function, determination of the protein conformational transition pathway upon ligand binding is made difficult due to the transient nature of intermediates, a large and rugged conformational space, and coupling between protein dynamics and ligand-protein interactions. Existing methods that rely on prior knowledge of the bound (holo) state structure are restrictive. A second concern relates to the correspondence of intermediates obtained to the metastable states on the apo → holo transition pathway. Here, we have taken the protein apo structure and ligand-binding site as only inputs and combined an elastic network model (ENM) representation of the protein Hamiltonian with linear response theory (LRT) for protein-ligand interactions to identify the set of slow normal modes of protein vibrations that have a high overlap with the direction of the protein conformational change. The structural displacement along the chosen direction was performed using excited normal modes molecular dynamics (MDeNM) simulations rather than by the direct use of LRT. Herein, the MDeNM excitation velocity was optimized on-the-fly on the basis of its coupling to protein dynamics and ligand-protein interactions. Thus, a determined set of structures was validated against crystallographic and simulation data on four protein-ligand systems, namely, adenylate kinase-di(adenosine-5')pentaphosphate, ribose binding protein-β-d-ribopyranose, DNA β-glucosyltransferase-uridine-5'-diphosphate, and G-protein α subunit-guanosine-5'-triphosphate, which present important differences in protein conformational heterogeneity, ligand binding mechanism, viz. induced-fit or conformational selection, extent, and nonlinearity in protein conformational changes upon ligand binding, and presence of allosteric effects. The obtained set of intermediates was used as an input to path metadynamics simulations to obtain the free energy profile for the apo → holo transition.

Keywords: ligand binding; ligand; protein; protein conformational; transition pathway

Journal Title: Journal of chemical theory and computation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.