LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space

Photo from wikipedia

We introduce an unsupervised clustering algorithm to improve training efficiency and accuracy in predicting energies using molecular-orbital-based machine learning (MOB-ML). This work determines clusters via the Gaussian mixture model (GMM)… Click to show full abstract

We introduce an unsupervised clustering algorithm to improve training efficiency and accuracy in predicting energies using molecular-orbital-based machine learning (MOB-ML). This work determines clusters via the Gaussian mixture model (GMM) in an entirely automatic manner and simplifies an earlier supervised clustering approach [ J. Chem. Theory Comput. 2019, 15, 6668] by eliminating both the necessity for user-specified parameters and the training of an additional classifier. Unsupervised clustering results from GMM have the advantages of accurately reproducing chemically intuitive groupings of frontier molecular orbitals and exhibiting improved performance with an increasing number of training examples. The resulting clusters from supervised or unsupervised clustering are further combined with scalable Gaussian process regression (GPR) or linear regression (LR) to learn molecular energies accurately by generating a local regression model in each cluster. Among all four combinations of regressors and clustering methods, GMM combined with scalable exact GPR (GMM/GPR) is the most efficient training protocol for MOB-ML. The numerical tests of molecular energy learning on thermalized data sets of drug-like molecules demonstrate the improved accuracy, transferability, and learning efficiency of GMM/GPR over other training protocols for MOB-ML, i.e., supervised regression clustering combined with GPR (RC/GPR) and GPR without clustering. GMM/GPR also provides the best molecular energy predictions compared with ones from the literature on the same benchmark data sets. With a lower scaling, GMM/GPR has a 10.4-fold speedup in wall-clock training time compared with scalable exact GPR with a training size of 6500 QM7b-T molecules.

Keywords: gmm; unsupervised clustering; training; orbital based; gpr; molecular orbital

Journal Title: Journal of chemical theory and computation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.